

電池與模組新技術的新問題-IEA Task 13新年度專題

林敬傑/首席顧問 PV Guider

Keep Green Gold Shining!

◆IEA PVPS與Task 13簡介

◆2022-2025計畫

IEA PVPS?

最有名的模組功率衰減圖

出自2014年Task 13報告

IEA-PVPS Task 13簡介

- ➢IEA-PVPS(Photovoltaic Power Systems) 是國際能源署 (IEA)合作研 發計劃之一,成立於 1993 年。
- ▶目前有 31 個 PVPS 成員,包括 27 個國家和 4 個組織。有8 個Task活 躍進行中,每個Task有多達 100 名專家參與。

▶ Task 13 的目標是改善太陽光電模組和系統的性能、可靠度和品質。

Task 13 2022-2025

Subtask 1: 新材料、元件與模組的可靠度

- 1.1 新電池及模組技術的性能衰退模式(傑博擔任共同主持人)
- 1.2 修復模組的性能與可靠度
- 1.3 針對特定負載的測試策略之影響
- 1.4 PV+儲能的可靠度

Subtask 2: 太陽光電系統的性能與耐久性

- 2.1 Floating PV
- 2.2 Agrivoltaics
- 2.3 雙面追日系統
- 2.4 數位整合與Digital Twinning
- 2.5 模組功率電子 (優化器等) 的效率與遮蔽效應

Subtask 3: 技術-財務性能指標

- 3.1 極端氣候及其對PV性能KPI的衝擊
- 3.2 針對特定氣候的KPI優化指引
- 3.3 PV電站財務KPI的影響
- 3.4 財務與可靠度KPI的連結

電池與模組新技術的新問題

Cell cracks of half cut cells and failures in shingled modules

Cell cracks of half cut cells

- M6 PERC half cells + 380 µm cell interconnect wires
- Interruption of lamination at specified pressures and temperatures followed by EL for crack detection

Test reveals critical lamination conditions

與ribbon有關

interconnector

ECA printing layout

finger metallization (Ag)

void

finger metallization (AI)

detector: SE2

acc. voltage: 10 kV

busbar metallization (Ag)

ECA

bifacial shingle solar cell - rear side

crack

encapsulant

solar cell

100 µm

finger metallization (AI)

- 導電膠的剛性與溫度膨脹係數似乎很重要
- 大部份發生在背面
- 實驗顯示對功率影響不大
- 50% 導電膠位置有隱裂

→ TC1000 後功率損失~= (-2.3±1.5)%

- -

_

.

ÞV		TC (-40~85)	XTC (↑ Δ T°C)	DML+XTC
	Failure mode	FF ↓ String interconnection failure	Same as TC	Same as TC
	EL image	String disconnection (ribbon failure)No problem on the shingle structure	Same as TC	Same as TC
N.	Impact of DML	-	-	 >DML has slight impact (△Pmax < 1%) >Accelerated FF ↓ caused by TC >The number of cycles has no impact on post-TC aging
202		To 600 TC To	300 XTC	500 200 DML 1000/1000 XTC XTC & 200 XTC

LID & LETID

BO-LID與LETID糾纏不清

- B-doped Cz-Si PERC cells小模組試驗結果:
 - DH1000: BO LID destabilization
 - TC200 沒有電流注入: BO LID destabilization
- 要免除BO LID的影響:
 - BO LID regeneration (CID85)
 - 會引發LETID
- 結合CID85 與 LETID recovery
 - ➢ 得到最精準量測,例如應用於R&D目的

Rear PID for PERC+, front PID for PERT & TOPCON

PID-Shunting

100%

90%

80%

60%

50%

40%

30%

0

٦.

Normalized 70%

PID-Polarization

PID-Polarization

n-type Cz wafer	p⁺ emitter	PID type	PID-polarization (PID-p)
	P-diffused ∕ n⁺ BSF ∕ SiO _x /SiN _x	Cell types	PERT & TOPCON front; SunPower type n ⁺ /n front IBC and PERT rear
Rear glass		Mechanism	正電荷聚集在正面介電層,吸引p-emitter的少 載子電子聚集,導致再複合損失 (IBC front 與
Positive string	SiO _x /SiN _x B-diffused	Sensitivities	PERT rear相反) 系統負偏壓(IBC front 與PERT rear相反), lightly doped emitter
n-type Cz wafer n-PERT cell	P-diffused	Mitigation	選擇AR coating的介電層 減少矽晶裡的類缺陷, UV irradiation

PVGuider

PID-Penetration

	PID type	PID penetration
	Cell types	Various
	Mechanism	Na+電荷遷移擴散到砂,穿越介電層導致表面 再複合速度上升(沒有達到造成junction短路)
	Sensitivities	系統負偏壓, lightly doped emitters
Na ⁺	Mitigation	選擇AR coating的介電層 阻抗更大的封裝材
Glass/encapsulatio Leakage current Si	N _x n-diffused ∕emitter	a) Bright field image b) TED pattern
p-type Cz wafer		5i 250 nm <001>

TEM results: a) bright-field image on a typical area showing no extended defects on PID-degraded area; b) diffraction pattern showing that Si is crystalline.

p-type Cz wafer Rear Ag contact

PID-Corrosion

85°C/85%RH/+600V/2000 h 結果顯示SiN層退化

4年戶外1500V系統有類似症狀

P. Hacke et. al, 2014 IEEE PVSC

Ohdaira et. al. EUPVSEC 2019 Sporleder et al Phys. Status Solidi RRL2019,13, 1900163 Na-based domes which partly destroys the surface $\text{SiN}_{x^{\star}}$ -1000 V to cell

PVGuider

PID-Delamination

PID type	PID-delamination
Cell types	Various
Mechanism	負偏壓、Na累積在cell表面導致腐蝕與脫層, 與副產物氣體的電化學反應
Sensitivities	高濕度, UV light
Mitigation	研究不多,但是預期阻抗更大的封裝材有幫 助

J. Li, Yu-C. Shen, P. Hacke, M. Kempe Solar Energy Materials and Solar Cells 188 (2018)

Encapsulant

50 °C, 30% RH, and –1000 V with test configuration Luo and coworkers IEEE J. PHOTOVOLTAICS, 8(1), 2018

背面POE/glass沒有完全避免PID-p

Degradation Modes of HJT and TOPCon Cells

Silicon Heterojunction Degradation

Jordan *et al.*:

顯著的V_{OC} 衰減

 特別是最開始兩年

 戶外模組顯示增加:

 Series resistance (R_s)
 Diode one recombination current density (J₀₁)

Subsequent studies [2, 3]

● 證實 R_s and J₀₁ increases 提出的機制:

Fig. 4. Indoor I–V measurements on the LACSS for all 5 modules (a), and outdoor I–V measurements on the system adjusted to a module temperature of 45° (b) and normalized by nameplate value. Uncertainty bars, only shown for one data point, are indicated by dashed vertical lines and are offset for better visibility.

PERC

- 濕氣/熱沒有造成明顯cell衰退
 - I_{sc}衰減
- 對醋酸造成的衰退大都有抵抗力,發生在正面導體

SHJ cells

- 濕氣/熱沒有造成明顯cell衰退 (1700 hrs DH)
- 醋酸造成的衰退大都與再複合相關
 - 即使長時間測試後,正面導體都維持得很好
- DH造成ITO表面改變是一致的
 - with increased sheet resistance;
 - 部份銀氧化發生,這些改變沒有導致lsc損失
- 只有DH不會造成Voc因為再複合損失而衰減
 - 醋酸才會

HOT CELLS in new PV modules

熱斑測試的最不利遮蔽條件

UV Flourescence

- 同時遮被左右各一片 1L+1R
- 最高溫cell 1R 196°C

A. Morlier, et al., *IEEE JPV*, vol. 7, nr. 6, pp. 1710-1716, 2017

R. Witteck, et al., EUPVSEC 2021, 4AV.1.25

遮蔽電池的逆偏壓功率與溫度相關性高

ITRI量測中心/PV Guider合作測試

半切模組不同運行模式下的最不利狀況

20% shading

 $P_{revse} = 68.87 \text{ W}$

50% shading

 $P_{revse} = 52.67 W$

Imp

2 cells 25% shading P_{revse} = 64.99 W

Perovskite and tandem degradation challenges and mitigation strategies

Degradation Modes for Perovskite PV

Perovskite PV 材料的特性:

- 弱鍵結讓離子隨電場移動
- •暴露在濕氣、氧氣、熱、光的衰退可能性高
- 封裝需要與水汽隔離且留住氣體
 - 產生氣體的化學反應是可逆的

衰退模式分類:

- 外在因素Extrinsic (water, oxygen, mechanical stress, PID)
- 內在因素Intrinsic (相穩定性,鹵化物偏析,分解,離子遷移)
- 装置因素Device specific (電極擴散,導電層反應,逆偏壓)

Keep Green Gold Shining

Dr. Jay Lin Mobile : +886 989-832-421 Email : Jay@pvguider.com

網站:<u>www.PVGuider.com</u> Website:<u>English.PVGuider.com</u>

Keep Green Gold Shining!